A brief overview on current and future antiepileptic drugs

Mohammad Asif*, Abida*, Md Tauquir Alam1
1 Department of Pharmacy, Himalayan Institute of Pharmacy and Research, Dehradun, Uttarakhand, India
2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia

Abstract
The search for antiepileptic agents with more selectivity and lower toxicity continues to be an area of investigation in medicinal chemistry. The mechanisms of action of the antiepileptic drugs (AEDs) consist in the blockade of voltage-dependent Na+ channels or T-type Ca2+ channels, inhibition of glutamatergic transmission and facilitation of γ-aminobutyric acid (GABA) inhibitory neurotransmission.

Keywords: Antiepileptic drugs, medicinal chemistry, new investigation

Introduction
An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is one of the most common neurological conditions, occurring in about 1% of the global population. It is second most common disorder after stroke. Several new drugs have been licensed and many others are in various stages of development, e.g. remacemide, lamotrigine, flunarizine, loreclezole and levetiracetam. Despite optimal use of the 16 antiepileptic drugs marketed in the United States, many patients with epilepsy fail to express seizure control and others do so only at the expense of significant toxic side effects. Phenyoine, Carbamazepine and Sulfamate toripamate (TPM) are antiepileptic drugs that have been clinically effective against different types of seizures [1]. Estimates suggest that available medication controls the seizures in only 50% of patients or decreases the incidence in only 75% of patients.

Causes
All forms of epilepsy have their origin in the brain. The different types of epilepsies are not based on a single underlying mechanism, but are multifactorial in origin. Epilepsy results when many neurons in union, under a high excited stage, deliver massive discharges abolishing a finely organized pattern of the integrative activity of the brain. John Jackson proposed that these seizures are caused by occasional, sudden, excessive, rapid and local discharges of grey matter and once initiate by the abnormal focus, the seizures attack the neighboring normal brain resulting into generalized convulsions. This abnormal focus may originate as a result of local biochemical changes, ischemia or the loss of vulnerable cell inhibitory systems. However, certain physiological changes may trigger the focus and thus facilitate the spread of abnormal electrical activity to normal tissue. Such factors include
a. Changes in blood glucose concentration
b. Plasma pH
c. Total osmotic pressure and electrolytes composition of extra cellular fluids
d. Fatigue
e. Emotional stress
f. Nutritional deficiency
g. Trauma, infection meningitis, brain tumors, cerebrovascular disease or metabolic abnormalities.

Epileptic seizures of unidentified cause are known as primary or idiopathic epilepsy while epileptic attacks of known causes are called as secondary or symptomatic epilepsy

Classification
a. Generalized epilepsy: Once initiated, it spreads quickly into the entire or at least the greater part of the brain. It can be further classified into
1. Tonic clonic seizures (grandmal type): It has a close resemblance with electrically induced convulsions where the mass stimulation of cortical neurons occurs. As the name indicates, initially there is a generalized tonic activity followed by clonic phase.
2. Absence or minor seizures (petitmal): It is reported to occur mainly in young children between the ages of 6 to 14 years. Seizures generally disappear spontaneously after adolescence.
3. Myoclonic seizures: The attack characterized by the jerky muscular movements of head, limbs or body as a whole. The etiology of attack is not known and is supposed to be due to brain damage.
4. Infantile spasms: The attack sometimes begins with a cry and is often associated with memory unconsciousness.
b. Partial or focal epilepsy: In this type the initial neuronal discharge originates from a specific limited cortical area. It can further be classified as
1. **Complex partial seizures** (psychomotor or lobe seizures); It usually originates in the anterior temporal lobe and is characterized by hallucinations, fear, hate or other emotional and behavioral abnormalities.

2. **Motor epilepsy**: Only one, entire side is affected, consciousness is not lost. Motor epilepsy is mainly witnessed in childhood and is due to more limited cortical abnormalities.

3. **Sensory epilepsy**: Similar to motor epilepsy except the fact that it arises in the sensory cortex area.

4. **Akinetic seizures**: Superficially no convulsions are seen. Patient may suddenly fall down on the ground without loss of consciousness.

c. **Status epilepticus** (acute repetitive seizures): It is the condition in which one attack follows another without patient regaining consciousness. If it remains untreated it may be fatal.

Mechanisms

a. **Neuronal Sites of Action of antiepileptics**2 — Antiepileptic drugs acting upon neuronal site have been shown by Fig.1.

b. **Sites of Action of antiepileptics in GABAergic Synapse**2—Antiepileptic drugs acting through GABAergic Synapse have been shown by Fig.2.

Targets and treatment approaches for anti-epileptic drugs

There are few targets for the Anti-Epileptic drugs

a. Inhibition of excitatory neurotransmitter, Glutamate
b. Enhancement of inhibitory neurotransmitter, GABA
c. Blockage of voltage-gated positive current, Na⁺ and Ca²⁺
d. Increase outward positive current, K⁺

Treatment Approaches

The only effective means of treating epilepsy currently available are medication and, in a small proportion of patients in whom medication is not effective, surgery on the brain. Treating epilepsy by "natural" means alone (e.g. with herbal remedies) is ineffective and may be dangerous.

a. **Treatment by Medication/Drugs**

1. Drugs acting through increasing inhibition

 Gabapentin and Progabide were the first drugs of this type to be developed. They are active against a wide spectrum of seizures. Vigabatrin appears to be a very useful medication in treating various forms of epilepsy that have not responded to other drugs. Early reports of degenerative changes in neurons of animals treated with Vigabatrin led to the most stringent appraisal of its safety in humans, but no similar effect has so far been reported in man.

2. Drugs Which Reduce Excitation of Neurons

 Lamotrigine partly blocks the release of the excitatory neurotransmitter glutamate from nerve endings, and reduces the influx of sodium in the recipient neuron (this influx of sodium is vital to nervous transmission). It too appears to have a wide range of anti-epileptic activity. Allergic reactions, especially skin rashes, are relatively common. It is used as an additional treatment in patients with partial seizures with or without secondary generalization, where seizures have not been controlled by other anticonvulsant drugs. Topiramate has been shown to significantly reduce the frequency of epileptic seizures, including refractory partial seizures. It appears to help balance electrical activity in the brain while blocking other substances that increase activity.

3. Drugs that affect the availability of gamma aminobutyric acid (GABA)

 Gabitril (tiagabine hydrochloride) is one of a new class of compounds that affects the availability in the brain of gamma aminobutyric acid (GABA), a naturally occurring chemical that is thought to suppress the abnormal, repetitive pattern of central nervous system activity that can lead to seizures. Gabitril appears to work by inhibiting neuronal reuptake of GABA, thereby prolonging the amount of time it is available at receptor sites.

b. **Surgery for Epilepsy**

 The idea of treating epilepsy by surgery is not new; the first operation for epilepsy was carried out in 1886. Interest in surgery has been revived in recent years, for it is now realized that it does have an important part to play in a small minority of patients, namely those who have a single solitary epilepsy-producing abnormality of the brain, situated in an area where removal does not leave any significant defect in the brain’s function. Even in these patients, operation is contemplated only when satisfactory control cannot be achieved with medication. To determine that a
patient does indeed have only one area of the brain giving rise to epilepsy, new nuclear medical techniques (SPECT and PET scanning) are used to supplement information from special EEG techniques including EEG telemetry, sleep studies, and recording from pharyngeal or sphenoidal electrodes as appropriate.

Antiepileptic Drugs

The currently used therapy of epilepsy includes various drugs that act through different mechanisms. There are several classes of antiepileptic drugs (AEDs) that have been divided on the basis of their chemical structure. Different established AEDs and newer antiepileptic drugs along with the drugs in pipeline are summarized in Table 1 and 2.

Table 1: General Description of Established Antiepileptic Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Clinical Uses</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenytoin (Dilantin)</td>
<td>Partial and tonic-clonic</td>
<td>Prolongs closing of inactivating gate of sodium channels of excitatory NT receptors in the CNS</td>
</tr>
<tr>
<td>Carbamazepine (Tegretol)</td>
<td>Partial and tonic-clonic</td>
<td>Prolongs closing of inactivating gate of sodium channels of excitatory NT receptors in the CNS</td>
</tr>
<tr>
<td>Phenobarbital (Luminal®)</td>
<td>Partial and tonic-clonic</td>
<td>Facilitates the inhibitory action of GABA, increases the duration of chloride channel opening at GABA-A receptors</td>
</tr>
<tr>
<td>Ethosuximide (Zarontin®)</td>
<td>Absence seizures</td>
<td>Inhibits low-threshold T-type calcium currents in thalamic neurons</td>
</tr>
<tr>
<td>Valproic acid (Depakene®)</td>
<td>Partial and tonic-clonic and absence seizures</td>
<td>Prolongs inactivation of sodium channels of excitatory NT receptors in CNS Inhibits low-threshold T-type calcium currents in thalamic neurons. Increases the amount of GABA in CNS. Increases GAD activity, Decreases GABA-T and succinic semialdehyde dehydrogenase activity</td>
</tr>
<tr>
<td>Clonazepam (Klonopin®)</td>
<td></td>
<td>Facilitates the inhibitory actions of GABA</td>
</tr>
<tr>
<td>Diazepam (Valium®)</td>
<td></td>
<td>Increases the frequency of opening of chloride channel of GABA-A receptor</td>
</tr>
<tr>
<td>Lorazapam (Ativan®)</td>
<td></td>
<td>Increases the frequency of opening of chloride channel of GABA-A receptor</td>
</tr>
<tr>
<td>Chlorazepate (Tranxene®)</td>
<td></td>
<td>Increases the frequency of opening of chloride channel of GABA-A receptor</td>
</tr>
<tr>
<td>Trimethadione</td>
<td></td>
<td>Inhibits low-threshold T-type calcium currents in thalamic neurons</td>
</tr>
<tr>
<td>Bromide</td>
<td></td>
<td>Not known</td>
</tr>
</tbody>
</table>

Structure of AEDs

- **Phenytoin (Dilantin)**
- **Carbamazepine (Tegretol)**
- **Phenobarbital (Luminal®)**
- **Ethosuximide (Zarontin®)**
- **Valproic acid (Depakene®) Divalproex Na (Depakote®)**
- **Clonazepam (Klonopin®)**
- **Diazepam (Valium®)**
- **Lorazapam (Ativan®)**
- **Chlorazepate (Tranxene®)**
- **Trimethadione**
Table 2: General Description of Newer Marketed AEDs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism</th>
<th>Clinical Uses</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eslicarbazepine</td>
<td>Novel voltage gated Na+ channel blocker</td>
<td>As adjunct in Partial onset seizures; also in bipolar disorder and trigeminal neuralgia</td>
<td></td>
</tr>
<tr>
<td>(Zebinix; Exalief)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felbamate (Felbatrol)</td>
<td>Possible blockade of NMDA receptor</td>
<td>Partial seizures. Lennox-Gastaut syndrome</td>
<td>Severe hepatitis Aplastic anemia</td>
</tr>
<tr>
<td>Flunarizine (Sibelium)</td>
<td>Ca^{2+}-channel blocker with Calmodulin binding property and Histamine blocking activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabapentin (Neurontin)</td>
<td>Increases the release of GABA</td>
<td>Adjunct drug for partial and generalized tonicclonic seizures</td>
<td>Somnolence Dizziness Ataxia Headache</td>
</tr>
<tr>
<td>Lacosamide (Vimpat)</td>
<td>Enhances slow activation of voltage gated Na+ channel</td>
<td>Partial seizures</td>
<td>Dizziness Headache Diploria Somnolence Skin Rash</td>
</tr>
<tr>
<td>Lamotrigine (Lamictal)</td>
<td>Prolongs closing of inactivating gate of Na+ channel</td>
<td>Adjunct for partial seizures with or without secondary generalization</td>
<td>Minimal, drowsiness Anxiety, Amnesia</td>
</tr>
<tr>
<td>Levetiracetan (Keppra)</td>
<td>Binds to synaptic vesicle protein SV2A thereby impeding nerve conduction across synapse</td>
<td>Partial seizures</td>
<td>Drowsiness Somnolence Fatigue Dizziness Paresethia Confusion</td>
</tr>
<tr>
<td>Oxcarbazepine (Trileptal)</td>
<td>Blockade of voltage sensitive sodium channels</td>
<td>Partial seizures with or without generalization</td>
<td>CNS side effects, hematological abnormalities and effects on drug metabolizing enzymes are less than carbamazepine</td>
</tr>
<tr>
<td>Pregabalin (Lyrica)</td>
<td>Not known</td>
<td>For neuropathic pain and adjunct therapy for partial seizure</td>
<td>Nervousness Dizziness Tremor Depression</td>
</tr>
<tr>
<td>Tiagabine (Gabatril)</td>
<td>Inhibition of GABA uptake</td>
<td>Adjunct for partial seizures</td>
<td></td>
</tr>
<tr>
<td>Topiramate (Topamax)</td>
<td>Prolongs closing of inactivating gate of Na+ channel, potentiates the GABA effect and blocks AMPA receptors</td>
<td>Partial and generalized tonic-clonic seizures</td>
<td>Somnolence Fatigue Dizziness Paresethia Confusion</td>
</tr>
<tr>
<td>Vigabatrin (Sabril)</td>
<td>Irreversible inhibitor of GABA aminotransferase (GABA-T)</td>
<td>Partial seizures</td>
<td>Drowsiness Dizziness Weight gain Psychosis</td>
</tr>
<tr>
<td>Zonisamide (Zonegran)</td>
<td>Inactivation of Na+ and Ca++ channels</td>
<td>Partial and generalized tonic-clonic seizures</td>
<td>Drowsiness Cognitive impairment</td>
</tr>
<tr>
<td>Perampanel (E2007)</td>
<td>Selective antagonist for the AMPA subtype of ionotropic glutamate receptors</td>
<td>Drug suggests efficacy and safety in refractory epilepsy</td>
<td>Dizziness drowsiness irritability headache falls ataxia</td>
</tr>
</tbody>
</table>

Structure of new AEDs

- **Eslicarbazepine (Zebinix; Exalief)**
- **Felbamate (Felbatrol)**
- **Flunarizine (Sibelium)**
- **Gabapentin (Neurontin)**
- **Lamotrigine (Lamictal)**
- **Levetiracetan (Keppra)**
- **Lacosamide (Vimpat)**
- **Oxcarbazepine (Trileptal)**
- **Vigabatrin (Sabril)**
- **Topiramate (Topamax)**
- **Pregabalin (Lyrica)**
- **Tiagabine (Gabatril)**
- **Zonisamide (Zonegran)**
- **Perampanel (E2007)**
<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
</tr>
</thead>
</table>
| Safinamide | • Monoamine oxidase B inhibitor
• Glutamate release inhibitor
• Inhibit Dopamine reuptake |
| Denzimol | • Imidazole derivative
• Does not interact with Glutamate or GABA receptors nor affects Na+ or Ca++ channel
• Effective in MES test in rodents |
| Soretolide | • Does not interact with Glutamate or GABA receptors nor affects Na+ or Ca++ channel
• No effect on sodium channel, GABAergic or Glutamate pathway
• Active against MES induced seizures and sc PTZ induced clonic seizures in rodents
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats |
| Carabersat | • Does not bind to ion channels, purinergic, aminergic, opioid and other peptidergic receptors
• No effect on sodium channel, GABAergic or Glutamate pathway
• Active against MES induced seizures and sc PTZ induced clonic seizures in rodents
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Retigabine | • Activates M-type potassium current and reduces excitability of neurons
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Active against MES induced seizures and sc PTZ induced clonic seizures in rodents
• Also used in corneal and hippocampal kindling model
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Talampanel | • Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Also used in corneal and hippocampal kindling model
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Valrocemide | • N- valproyl derivative of GABA and Glycine
• Effective against MES induced seizures and sc PTZ-induced seizures
• Also used in corneal and hippocampal kindling model
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Brivaracetam | • 4- n- propyl analog of levetiracetam in a racetam derivative
• Binds to ubiquitous synaptic vesicle protein SV2
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Ganaxolone | • A steroid drug related to pregnanolone which has sedative, anxiolytic and anticonvulsant effects
• Potent and selective positive allosteric modulator of GABA receptor
• Well tolerated in case of partial seizures
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Losigamone | • Potential GABA dependent Chloride influx
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Remacemide | • Low affinity NMDA antagonist with Na+ channel blocking property
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |
| Loreclezole | • A sedative and anticonvulsant which acts as a GABA agonist
• No effect on sodium channel, GABAergic or Glutamate pathway
• Effective against MES induced seizures and sc PTZ induced clonic seizures in mice and rats
• Blocks AMPA receptors in a stereo-selective and non-competitive fashion via an allosteric site |

Structure of newer AEDs:

- **Safinamide**
- **Denzimol**
- **Soretolide**
- **Carabersat**
- **Retigabine**
- **Talampanel**
- **Losigamone**
- **Valrocemide**
Pharmacophore model for new anticonvulsant agents
A suggested pharmacophore model showed that four pharmacophoric elements are necessary for good anticonvulsant activity [3,4]. These are (a) hydrophobic domain, A (b) Hydrogen bonding domain, HBD (c) distal hydrophobic domain, D (d) electron donor moiety, C. The pharmacophoric elements were thought to be a lipophilic aryl ring and hydrogen bonding moiety. The attachment of a second aryl ring designated as the distal ring to the proximal aryl ring is to increase the van-der waal’s bonding at the binding site and to increase potency [5,6]. Substitutions in the aryl ring by halogens have been found to increase potency in the MES screen [5,7]. Anti-convulsant medications are the category of medications that work to relieve nerve pain. These medications alter the function of the nerve and the signals that are sent to the brain. The most commonly prescribed anticonvulsant medication for nerve pain is called Neurontin (Gabapentin). Another option that has more recently emerged, specifically for the treatment of fibromyalgia, is called Lyrica (Pregabalin) [8].

References